High performance liquid chromatographic separation of thirteen drugs collected in Chinese Pharmacopoeia 2010(Ch.P2010) on cellulose ramification chiral stationary phase
نویسندگان
چکیده
The enantiomers separation of thirteen drugs collected in Ch.P2010 was performed on chiral stationary phase of cellulose ramification (chiralpak OD and chiralpak OJ) by high performance liquid chromatographic (HPLC) methods, which included ibuprofen (C1), ketoprofen (C2), nitrendipine (C3), nimodipine (C4), felodipine (C5), omeprazole (C6), praziquantel (C7), propranolol hydrochloride (C8), atenolol (C9), sulpiride (C10), clenbuterol hydrochloride (C11), verapamil hydrochloride (C12), and chlorphenamine maleate (C13). The mobile phase consisted of isopropanol and n-hexane. The detection wavelength was set at 254 nm and the flow rate was 0.7 mL/min. The enantiomers separation of these thirteen racemates on chiralpak OD column and chiralpak OJ column was studied, while the effects of proportion of organic additives, alcohol displacer and temperature on the separation were studied. And the mechanism of some of racemates was discussed. The results indicated that thirteen chiral drugs could be separated on chiral stationary phase of cellulose ramification in normal phase chromatographic system. The chromatographic retention and resolution of enantiomers could be adjusted by factors including column temperature and the concentration of alcohol displacer and organic alkaline modifier in mobile phase. It was shown that the resolution was improved with reducing concentration of alcohol displacer. When concentration of organic alkaline modifier was 0.2% (v/v), the resolution and the peak shape were fairly good. Most racemates mentioned above had better resolution at column temperature of 25 °C. When racemates were separated, the temperature should be kept so as to obtain stable separation results.
منابع مشابه
Review High-performance liquid chromatographic enantioseparation of drugs containing multiple chiral centers on chiral stationary phases
In recent years there has been considerable interest in the synthesis and separation of enantiomers of organic compounds especially because of their importance in the biochemistry and pharmaceutical industry. High-performance liquid Chromatography is a very useful method for the direct separation of enantiomers. However, about 30−40 years ago, commercially available chiral stationary phases wer...
متن کاملPreparation and chiral separation of a novel immobilized cellulose-based chiral stationary phase in high-performance liquid chromatography.
The chiral selector 6-azido-2, 3-di(p-chlorophenylcarbamoylated) cellulose was synthesized and further chemically immobilized onto 5-μm amino functionalized spherical porous silica gel. It was used as chiral stationary phase in high-performance liquid chromatography. Thirty racemates were successfully separated into enantiomers in either normal phase mode or reversed-phase mode. Good reproducib...
متن کاملEnantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC.
A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine...
متن کاملSynthesis of Cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an Ionic Liquid and Its Chiral Separation Efficiency as Stationary Phase
A chiral selector of cellulose-2,3-bis(3,5-dimethylphenylcarbamate) (CBDMPC) was synthesized by reacting 3,5-dimethylphenyl isocyanate with microcrystalline cellulose dissolved in an ionic liquid of 1-allyl-3-methyl-imidazolium chloride (AMIMCl). The obtained chiral selector was effectively characterized by infrared spectroscopy, elemental analysis and 1H NMR. The selector was reacted with 3-am...
متن کاملChiral Separation of Pharmaceuticals by High Performance Liquid Chromatography
The increasing demand for enantiopure drugs has led to the development of a variety of stereoselective separation technologies. Among them, high performance liquid chromatography (HPLC) is well recognized as a powerful, fast and efficient technique, which has been successfully employed for analysis and preparation of enantiomers of drugs. Nowadays, liquid chromatographic techniques are the focu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012